
Enforcing Fairness in Disaggregated
Non-Volatile Memory Systems

Vamsee Reddy Kommareddy1, Amro Awad1, Clayton Hughes2, and Simon
David Hammond2

1 University of Central FLorida, Orlando FL 32816, USA
vamseereddy8@Knights.ucf.edu, amro.awad@ucf.edu

2 Sandia National Laboratories, Albuquerque, NM 87185, USA
chughes,sdhammo@sandia.gov

Abstract. As many applications have growing demands for memory, the
memory system is expected to become the bottleneck of next-generation
computing systems. Sharing memory system across processor sockets and
nodes becomes a compelling trend because memory is scaling at a slower
rate than processor technology. Moreover, as many applications rely on
shared huge data, e.g., graph applications and database workloads, having
a large number of nodes accessing shared memory allows for efficient use
of resources and avoids duplicating huge files, which can be infeasible for
large graphs or scientific data.
Upgrading memory modules and maintenance become a challenging task
when dealing with thousands of computing nodes. Thus, placing all
memory modules in a centralized location, i.e., memory blade, instead of
coupling them with specific compute nodes, can enable more flexibility
in upgrading memory and maintenance. Hence, disaggregated memory
systems are more suitable for large scale systems that get upgraded
frequently. However, due to the nature of disaggregated memory systems,
different users and applications compete for the available shared memory
bandwidth, and therefore can result in severe contention due to memory
traffic from different SoCs. In this paper, we discuss the contention
problem in disaggregated memory systems and suggest mechanisms to
ensure memory fairness and enforce QoS. Our simulation results show that
employing our proposed QoS techniques can speed up memory response
time by up to 55%.

Keywords: Disaggregated memory systems · Non-volatile memory ·
Quality of service.

1 Introduction

The memory system is becoming a major bottleneck in conventional High-
Performance Computing (HPC) systems. HPC systems are usually designed to
have per-node memory that can accommodate the largest memory footprint of the
expected set of applications. Unfortunately, due to the diversity of applications
run on HPC systems, especially with the emergence of cloud computing, the



2 VR Kommareddy et al.

memory requirements can vary a lot. This can lead to situations where the
memory subsystem is underutilized. Perhaps more importantly, because the
memory subsystem is typically constructed with DRAM, each node can incur
very high cooling costs in addition to significant power consumption [27, 24, 10,
11, 22, 25, 23, 32]. Additionally, the emergence of workloads that process huge
shared files or large graphs makes private memory for a node less attractive.
These workloads are expected to become more common in the future, [6, 18],
pushing future computing systems to become memory-centric.

In memory-centric systems, a memory blade contains all global/shared memory
across the nodes and can be accessed by any of the computing nodes. Compute
nodes can be as simple as System-on-Chip (SoC) nodes. Such systems are also
typically referred to as disaggregated memory systems (DMS) [26]. Each node is
connected to the shared memory through a high speed interconnect fabric, e.g.,
GenZ or CCIX [9, 8]. An example of such a system is The Machine project from
HP Labs [7]. These memory-centric systems promise scalable shared memory
applications and significant reductions of communication overhead by relying
on shared memory instead of ethernet interfaces to facilitate message passing
between compute nodes. Moreover, applications that access shared large files or
data-sets concurrently can benefit from having these files resident in the globally
accessible shared memory. Such a trend becomes more compelling with emerging
Non-Volatile Memories (NVMs) [5, 20] which promise terabyte capacities per
memory module, and can be leveraged to keep shared files and large data-sets
persistent with ultra-low idle power. And, unlike DRAM, NVMs do not require
frequent refresh operations and can retain their data even after power loss.

Unfortunately, as DMS are expected to be used in multi-tenant environments,
e.g., cloud systems or data centers, contention can become a significant problem
due to competition for the shared global (centralized) memory. As the number
of compute nodes that share the global memory increases, the more likely the
average global memory access time will increase. Additionally, the worst-case
access latency becomes much higher and mainly depends on the access patterns
of other nodes and their memory intensity. This potential slowdown can certainly
affect the adoption of such systems in environments where users and applications
are guaranteed some level of quality assurance through Service-Level Agreements
(SLAs), such as in cloud systems. To this end, ensuring Quality-of-Service (QoS),
is essential for designing and using DMS.

In this paper, we investigate the impact of QoS on application performance
when running on DMS. Specifically, we propose a hierarchical dynamic priority-
based approach to support QoS in disaggregated NVM systems. Two levels of
priorities are maintained - static and dynamic. Static priority is fixed at run-time.
Dynamic priority is adjusted over the lifetime of the application. We divide the
shared memory into memory pools to improve performance and study the effect
of our approach. To the best of our knowledge, our work is the first to investigate
QoS on DMS in addition to investigating novel solutions for this purpose.

The rest of the paper is organized as follows: Section 2 discusses the back-
ground on QoS and DMS. Section 3 details the design and approach of our



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 3

hypothesis. Evaluation and results are discussed in Section 4. Finally, we con-
clude in Section 6.

2 Background, Related Work and Motivation

In this section, we briefly explain the most relevant concepts to our paper, e.g.,
DMS and QoS. Later, we present motivational results that demonstrate the
contention issue on memory-centric systems and the importance of QoS in such
systems.

Interconnecting Network

Memory
Memory
Memory

C C C C
C C C C

C C C C
C C C C

C C C C
C C C C

GPU
GPU
GPU

GPU
FPGA
FPGA

Disaggregated
Storage

Disaggregated
Memory

Nodes

Disaggregated
Specialized Hardware

Fig. 1. Disaggregated Memory System

2.1 Disaggregated Memory Systems (DMS)

As memory-driven computing becomes the leading trend when designing high-
performance computing (HPC) and high-performance data analytics (HPDA)
systems, disaggregated memory is considered one of the most promising archi-
tectures to enable efficient sharing and concurrent access to huge data [21, 7].
Moreover, the emergence of non-volatile, dense and fast memory technologies, e.g.,
3D Xpoint [14], makes building large shared memory systems a more appealing
option when hosting large shared memory-mapped files and data. Addition-
ally, upgrading memory and maintenance is much easier(by replacing memory
blades[21]) with such systems than manually upgrading hundreds of thousands
of nodes. Finally, DMS allow seamless integration of new compute nodes by
just connecting them to the high-speed interconnect and allowing them to share
data with the help of conventional load/store operations instead of using costly
OpenMPI framework calls and access large memory capacities. Recent studies
demonstrate that approximately 80% of the jobs on HPC systems overestimate
their memory prerequisites [1]. By committing memory to particular jobs, HPC
frameworks often under-utilize the available memory. With DMS, each node can
request as much memory as it needs from the shared space while the rest can be
utilized by other nodes.

However, a lot of challenges need to be addressed while dealing with DMS,
which opens a path for designing future computing systems. One of them is, even
though DMS can provide better bandwidth by scaling the number of channels to



4 VR Kommareddy et al.

shared memory, at the expense of speed, fair allocation of memory bandwidth
to all the applications should be handled in heterogeneous systems to provide
Quality of Service (QoS).

2.2 Quality of Service

The more compute units deployed in a system, the more contention there will be in
the memory subsystem(shared resource). Contention on memory banks and shared
request queues become more aggressive as the number of compute nodes accessing
the shared (global) memory increases. However, many modern applications are
memory-driven; computing components accessing the same memory units are
more common. Different memory scheduling schemes are implemented in memory
controllers to enforce QoS. Zhou et al. [34] implemented a fine-grained QoS
scheduling for PCM memory using pre-emption methodologies at the cost of
performance. Subramanian et al. [30] worked on designing a model to accurately
estimate memory-interference-induced slowdowns. They also proposed a memory
scheduler that meets hardware accelerator deadlines along with maximizing CPU
performance [31]. Jeong et al. [16] proposed QoS aware memory controller which
can dynamically balance bandwidth between CPUs and GPUs. Zhao et al. [33]
proposed a memory control scheme called FIRM which can fairly run persistent
and non-persistent applications. While all the above-mentioned schemes works
for the respective targeted systems, they need to be a carefully studied for DMS
as the contention at the shared memory controller is huge in such systems. We
explore possible solutions that can enhance QoS and study the possible outcomes
to improve the performance of disaggregated non-volatile memory system.

2.3 Motivation

Since shared memory in DMS is accessed by multiple nodes, the contention at
the shared memory is expected to be high and could cause significant slowdowns.
Moreover, as DMS use a remote memory, there is an incremental delay in accessing
memory due to the network. Figure 2 shows the delay in accessing memory per
request in disaggregated memory system while varying the number of nodes in
the system3.As expected, there is a significant increase on the average memory response
time when increasing the number of nodes running on a disaggregated memory
system. Such slowdowns mainly depend on the memory-intensity of the appli-
cations running on the compute nodes and the sensitivity of the applications
to memory latency. Surprisingly, we observe that such contentions can lead to
multiple times increase in global memory access latency. Pennant, due to its
memory intensity and streaming access pattern, incurs more than 3 times increase
in access latency when there are 4 nodes sharing the same memory; from 380ns
up to 1400ns. Note that row buffer locality can be severely impacted and the
chances of finding row buffer hits would decrease with receiving many memory
requests from other nodes. In this paper, we explore novel hierarchical, static
and dynamic priority schemes as QoS assurance mechanisms on DMS.

3 More details about the methodology and benchmarks are explained in section 4 in
detail.



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

miniFE simpleMoC lulesh pennant NAS:is

A
ve

ra
ge

 d
el

ay
 p

er
 r

eq
ue

st
(n

s)

1 node
4 nodes

Fig. 2. Delay per request in accessing memory for generic and disaggregated memory
systems

3 Design

In this section, we discuss our proposed QoS support for disaggregated memory
systems. Our scheme, hierarchical priority, implements two levels of priorities -
static (defined before run-time) and dynamic (changes based on memory intensity).

3.1 Hierarchical Priority

In this section, we focus on explaining how a hierarchical priority scheme works
in disaggregated memory systems. Hereinafter, the systems discussed consist
of multiple nodes that run simultaneously and share a global memory that
is accessible through a fast interconnect. Moreover, each node runs a single
application.

Priority Queue
Priority Queue
Priority Queue
Priority Queue

Request Queue

Priority Queue

External memory controller

Clock
Non-Volatile

Memory
(NVM) Maximum requests

per cycle

Static priority

1
2
3

p

02^(p-0)

2^(p-2)
2^(p-3)

2^(p-p)

2^(p-1)

Priority QueueRequest Queue

Local memory controller

Clock
Non-Volatile

Memory
(NVM) Maximum requests

per cycle

Static
Priority

Fig. 3. Hierarchical priority based QoS implementation in Local and External memory
controllers

Static Priority This is a fixed priority for each node which is configured during
the initialization phase of the application4. The memory controller maintains
a queue for each static priority level. However, to keep the number of queues
practical, we limit this to a maximum of 8 static priority levels. Requests from

4 Assigning static priorities to nodes is in accordance with service level agreement.



6 VR Kommareddy et al.

applications with similar static priorities are placed in the same queue. Note that
this is, to some extent, similar to the state-of-the-art storage protocol, NVM
Express [29], where multiple I/O submission queues are configured with different
priorities but in the context of disaggregated memory systems.

Figure 3 depicts the implementation of static priorities. The disaggregated
memory system has two types of memories: shared memory and local memory.
Based on our design, the shared memory controller is required to maintain a
priority queue for each static priority supported in our system. Each local memory
controller maintains only one priority queue that can perform dynamic priority,
as explained in section 3.1, if the node executes multiple applications. Request
batches are pulled from priority queues based on their static priority levels. For
instance, if we consider four static priority levels, for every batch of requests the
memory controller serves up to 16 requests from the node with static priority of
0, up to 8 requests from the node with static priority of 1 and so on. So if we
assume p as the number of static priority levels and i as the static priority of the
node then number of requests addressed by memory controller in a batch can be
represented as

Rbatch/node = 2p−i (1)

Dynamic Priority In general, applications can be categorized into memory-
bound and compute-bound applications. Memory-bound applications are prone to
read and write data to memory frequently and require more memory bandwidth.
Compute-bound applications are dependent on computation power of the system
and are less prone to memory accesses.

Irrespective of the type, applications need to compete for the limited band-
width and because of the wide gap between computing power and memory
accessing capacity, memory bandwidth is limited for the applications. Due to this
scenario, compute-bound applications, need to wait for the memory bandwidth
to fetch small amount of information and this wait can be costly and can severely
affect the performance of the applications. Memory-bound applications are less
memory sensitive and can be delayed for memory accesses. By taking the variance
in memory sensitivity into consideration, we define the dynamic priority based
on the characteristics of the applications running in the nodes with a specific
static priority. Applications with less memory requests should have higher priority
and applications with more memory requests can bare less priority. Therefore,
dynamic priority can be expressed as

P =
Rnode

ARstaticpriority
(2)

P is the dynamic priority of the node, Rnode is number of requests per node
and ARstaticpriority is average number of requests per static priority which is
represented as

ARstaticpriority =
TRstaticpriority

Nstaticpriority
(3)



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 7

where TRstaticpriority is total number of requests from a specific static priority
and Nstaticpriority is number of nodes with the same static priority.

According to Equation 2, low priority applications can starve if dominated by
high priority applications. Thus, we use the request rate per period (epoch) for
each node to calculate its dynamic priority. When the application has a smaller
number of requests in the prior period, its dynamic priority will be higher and
hence its requests do not get pre-empted by memory-intensive applications with
the same static priority. The dynamic priority can be expressed as:

P =
Rnode ∗RRnode

ARstaticpriority
(4)

where RRnode is the rate of requests per node which is calculated for every epoch5

Once the dynamic priority is calculated, the requests are prioritized within
same static priority and then they are added to the request queue in accordance
with the static priority. For every clock cycle, the memory controller serves
requests relative to the priority. The combination of dynamic and static pri-
orities meets the requirements of disaggregated memory system architectures
and promises to enforce QoS by allocating more bandwidth to high priority
applications while meeting the requirements of low priority applications, however,
also ensuring fairness across applications with similar priority levels.

3.2 Splitting Shared Memory

Contention at the shared memory increases exponentially with the increase in
number of compute units sharing it. Also, it is very unlikely and inefficient to
maintain the entire shared memory in a single huge memory pool. Considering
this, we explore the option of dividing the shared memory into multiple memory
pools. By doing so, we can dedicate shared memory pools for high static priority
nodes. In other words, high static priority nodes can have a dedicated memory
pool that cannot be accessed by low static priority nodes or any other high static
priority nodes. In this scenario, the memory bandwidth of each dedicated pool is
devoted to the corresponding node running a high-priority application, which
might lead to better performance. In contrast, memory pages of low static priority
nodes can be allocated from a range of memory pools that are classified as low
priority shared memory pools, i.e., not dedicated but rather shared between all
nodes, including high static priority nodes. An example is illustrated in Figure
4. It can be seen that the shared memory is divided into a number of memory
pools and nodes with high static priority have dedicated shared memory pools.
Also, a chunk of the low priority pools is marked for high priority static nodes,
which indicates that the low priority pools are accessed between all the nodes
irrespective of their priorities. This way we assume to achieve better QoS along
with improving performance.

If there are more nodes with high static priority then it would be difficult to
divide shared memory into an appropriate number of memory pools. We address

5 Time interval for which the rate of requests per node is calculated.



8 VR Kommareddy et al.

this by dividing shared memory proportionally. That is, some of the low priority
memory pools are converted to high priority memory pools and also high static
priority nodes can share dedicated memory pools.

The downside of this approach is that each node will have a portion of shared
memory rather than entire shared memory. For high priority nodes, this can be
manageable by allocating memory from low priority shared memory pools or free
shared memory pools when the dedicated remote memory pool is full. But for
low priority nodes, this option is narrow and can lead to starvation.

Centralized manager can allocate shared pages, from single shared memory
pool, to the applications sharing information between them. Pages of the applica-
tions that are not shared with other applications can be assigned from different
memory pools to avoid contention. With this we enable applications to share
data with less contention from applications that do not share huge information.

Node 7:
Priority: L

Node 4:
Priority: H

Node 8:
Priority: L

Node 3:
Priority: H

Node 6:
Priority: L

Node 5:
Priority: L

Node 2:
Priority: H

Node 1:
Priority: H

Dedicated
Memory Pool

for node 4

Dedicated
Memory Pool

for node 3

Dedicated
Memory Pool

for node 2

Dedicated
Memory Pool

for node 1

Low priority memory pools

Accessed by both the priorities

Fig. 4. Dedicating shared memory pools for high priority nodes.

4 Evaluation

To evaluate our QoS support for disaggregated memory systems, we extend the
Structural Simulation Toolkit (SST) [28]. We have created an external memory
with its respective memory controllers and connected it to compute nodes through
a fast network modelled after GenZ [9] as described in [19]. As the local memory
is expected to be very small in such systems [7], we deploy an alternating memory
allocation policy [19], where memory is allocated alternatively from shared and
local memory. The modules that we used to simulate disaggregated memory
system is described in [19].

Table 1 describes the simulation parameters used to evaluate the design. L1,
L2 and L3 caches are non-inclusive type and each are of sizes 32KB, 256KB
and 16MB respectively. We used NVM as shared memory and considering the
density of NVM, we maintained NVM size as twice the local memory per node.



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 9

We understand that NVM density is much higher compared to DRAM. Future
disaggregated systems with higher densities can also benefit from our QoS
approach. As explained in section 4.2, 4 nodes are simulated to study our
approach. Hence, we used 16GB (4nodes ∗ 2 ∗ localmemorysize) of shared NVM.
A maximum of 100 million instructions are executed in each core.

Table 1. Simulation Parameters

Element Parameters

CPU 8 Out-of-Order cores, 2GHz, 2 issues/cycles, 32 max. outstand-
ing requests

L1 private, 64B blocks, 32KB, LRU
L2 private, 64B blocks, 256KB, LRU
L3 shared, 64B blocks ,16MB, LRU
Local memory 2GB, DDR4-based DRAM
Global memory 16GB, NVM-based DIMM (PCM), 128 max. outstanding re-

quests, 16 banks, 300ns Read Latency, 1000ns Write Latency
External network la-
tency

20ns[4]

For the simulation model, we use the alternate memory allocation policy
in which memory is allocated alternatively from shared and local memories.
For example, if the disaggregated memory system is configured to have a local
memory and a shared memory pool, then for every two-page faults one page is
allocated from shared memory and one from local memory. If shared memory is
divided into pools, then every time a page is to be allocated from shared memory,
it is allocated from a different shared memory pool, ensuring that the shared
memory is evenly allocated.

Note that this a state-of-the-art model to demonstrate the advantages of
dividing shared memory into multiple pools. We assume that each shared memory
pool should have memory more than local memory (2GB). Since we are using a
global memory of 16GB and if it is divided into 4 shared memory pools, each
pool will have 4GB of memory, which is greater than local memory size. Hence
we confine to dividing shared memory up to a maximum of 4 memory pools.

Simulated Applications Considering that our focus is on HPC applications in
disaggregated memory environment, we choose 5 memory intensive HPC proxy
applications to evaluate our design. Lulesh [17], a mini-app for hydrodynamics.
Pennant [12] is an unstructured mesh physics mini-app designed for advanced
architecture research. SimpleMOC [13], mini-app is to demonstrate the perfor-
mance characteristics and viability of the Method of Characteristics (MOC)
for 3D neutron transport calculations in the context of full scale light water
reactor simulation. NASA IS [2, 3] mimic the computation and data movement
characteristics of large scale computational fluid dynamics (CFD) applications.
IS is an integer sort kernel which performs a sorting operation that is important
in particle method codes. MiniFE [15] is a proxy application for unstructured
implicit finite element codes. We decided upon these specific applications as these
are memory intensive.

For the rest of the evaluation, N indicates number of nodes. SM is shared
memory along with local memory wherein SM1 indicates 1 shared memory
pool. For example, N2 with SM2 indicates 2 nodes with a local memory each



10 VR Kommareddy et al.

and 2 shared memory pools are available for the nodes to utilize. Mixes are a
combination of applications running in each node which are explained in Table
2. noqos indicates experiments without any QoS. hp indicates experiments with
hierarchical priority. Application running in each node is expressed as a − n
wherein n indicates node number.

Table 2. Applications-Mixes

Name Description

mix-1 miniFE-SimpleMoC-lulesh-pennant
mix-2 SimpleMoC-lulesh-pennant-NAS:IS
mix-3 lulesh-pennant-NAS:IS-miniFE
mix-4 pennant-NAS:IS-miniFE-SimpleMoC

4.1 The Impact of Number of Shared Memory Pools

In a disaggregated memory architecture, as the number of nodes in a system
increases, the contention at memory increases exponentially, and thus the response
time from the shared memory is expected to be slower with increase in the
number of sharing nodes. Such delays affect the performance of individual nodes
in addition to the overall system throughput. We calculate the performance of
each node in terms of relative response time per memory request (RRT). An
average of all the nodes is taken into consideration. RRT is relative to running the
application in a node on the same system but without any applications running
on the other nodes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

N1 N2 N4 N1 N2 N4 N1 N2 N4 N1 N2 N4 N1 N2 N4
miniFE simpleMoC lulesh pennant NAS:is

R
el

at
iv

e 
re

sp
on

se
 ti

m
e 

pe
r 

re
qu

es
t

SM1
SM2
SM4

Fig. 5. Relative response time per memory request of disaggregated memory system
model

Figure 5 show the impact of using multiple shared memory pools along with
the resulting performance degradation under multiple nodes scenario without
any kind of priorities. For instance, for Pennant application, RRT is 3x times
with 4 nodes due to heavy contention at the single shared memory pool from
other nodes, Figure 5.

Note that the memory concurrency is limited by the number of banks at the
memory. Hence, when the entire shared memory is maintained in one shared
memory pool, the parallelism is limited to 16 banks, according to our simulation
parameters. When multiple shared memory pools are used, the level of parallelism
is higher due to the increase in the number of banks, 4 ∗ 16 banks for 4 shared
memory pools. It can be also observed that, for the same application, Pennant,



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 11

when shared memory is maintained in 4 memory pools, RRT is almost equal to
the RRT when only one node is running in the system with one shared memory
pool. Therefore, contention due to multiple nodes can be reduced by maintaining
multiple shared memory pools.

It should also be noted for the same application, Pennant, if multiple shared
memory pools are used with only one node in the system, the performance
increases immensely (0.4x times RRT). This is due to huge memory concurrency
and no contention at shared memory from other nodes as the system has only
one node. Also, RRT of the system decreases as the number of shared memory
pools increases due to less contention at each shared memory pool.

4.2 QoS using Hierarchical Priority

As the focus of this paper is to provide a proof-of-concept and due to the
constraints of simulation time, we limit our evaluation to only 4 nodes with nodes
1 and 2 as high priority nodes and nodes 3 and 4 as low priority nodes. For
every mixed workload, as shown in Table 2, the first 2 mentioned benchmark
applications would be running in high priority nodes, nodes 1 and 2, and the
remaining 2 benchmark applications run in the last 2 nodes, nodes 3 and 4, with
low priority. Request frequency is calculated for each epoch period - every 1
million cycles (we varied the epoch size and empirically found that 1 million gives
the most suitable epoch length).

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

a-
1

a-
2

a-
3

a-
4

mix-1 mix-2 mix-3 mix-4
SM1

mix-1 mix-1mix-2 mix-2mix-3 mix-3mix-4 mix-4
SM2 SM4

R
el

at
iv

e 
re

sp
on

se
 ti

m
e 

pe
r 

re
qu

es
t

noqos
hp

Fig. 6. Relative response time per request wherein global memory is divided into shared
memory pools in disaggregated memory system.

Figure 6 depicts the performance of disaggregated memory systems under the
hierarchical priority based QoS method and without QoS. It can be seen that in
every mix the 2 nodes with high static priority modeled in hierarchical priority
out performs the no QoS model. For example, in mix-2 the RRT for nodes 1 and
2, when shared memory is not divided into multiple pools SM1, is reduced to
around 0.6x each, as observed from Figure 6. We observed a maximum of 55%
improvement in RRT (node 2 mix-1 ) with a single shared memory pool.

For low priority nodes the RRT is reduced for some mixes and it increases
for some other mixes. This is due to less contention at shared memory from high
priority nodes as they are addressed as soon as possible and different memory



12 VR Kommareddy et al.

footprints of the applications. For instance, in mix-2, RRT of nodes 3 and 4 is
reduced to 0.8x and 0.7x respectively using hierarchical priority with one shared
memory pool SM1. At the same time for mix-3, RRT for node 3 increases to 1.4x
times.

We evaluated our design by dividing shared memory into 2 and 4 shared
memory pools, Figure 6. We observed similar pattern using multiple shared
memory pools but due to more bank parallelism the performance of the system
is better as shown in Figure 5. An RRT improvement of up to 50% (node 2 in
mix-1 ) for 2 shared memory pools and up to 28% (node 2 mix-1 ) for 4 shared
memory pools can be observed in Figures 6.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

m
ix-

1
m

ix-
2

m
ix-

3
m

ix-
4

m
ix-

1
m

ix-
2

m
ix-

3
m

ix-
4

m
ix-

1
m

ix-
2

m
ix-

3
m

ix-
4

SM1 SM2 SM4

R
el

at
iv

e 
re

sp
on

se
 ti

m
e 

pe
r 

re
qu

es
t

noqos
hp

Fig. 7. Overall relative response time per request of disaggregated memory system
using no QoS and hierarchical priority based QoS

Overall system performance in terms of RRT per memory request is shown
in Figure 7. We could observe an overall maximum performance improvement of
30% using single shared memory with mix-2.

5 Conclusion

Memory-driven HPC applications and factors such as memory under-utilization,
memory upgradability and information sharing make disaggregated memory
systems a better choice but come at the cost of speed and performance. There
are many factors that still need to be understood to effectively improve the
performance of such systems. QoS is a crucial aspect that demands careful
attention in disaggregated memory systems and is inversely proportional to
the number of nodes. In this paper we carefully analyzed the performance of
disaggregated memory system, proposed and studied QoS approaches.

We proposed hierarchical priority, a combination of static and dynamic
priority-based QoS for disaggregated memory systems. We determined that
assigning priorities to nodes and modifying priorities at run time can greatly
improve the performance of the system. To improve the performance further,
we divided the shared memory into pools and dedicated pools for specific nodes.
Dedicating shared memory pools to specific nodes reduced the overall memory per
node and not produce the anticipated performance gains due to less concurrency
when accessing memory. Our conclusion opens up a new research direction to



Enforcing Fairness in Disaggregated Non-Volatile Memory Systems 13

explore more aspects related to disaggregated memory systems. We would like
to extend this work by simulating more number of nodes and dividing shared
memory into feasible number of pools.

References

1. Adaptive resource optimizer for optimal high performance compute resource uti-
lization. pp. 1–5. Synopsys Inc, silicon to software, Mountain View (2015)

2. Bailey, D.H.: Nas parallel benchmarks. In: Encyclopedia of Parallel Computing, pp.
1254–1259. Springer (2011)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The nas
parallel benchmarks. The International Journal of Supercomputing Applications
5(3), 63–73 (1991)

4. Borkar, S.: Networks for multi-core chips–a controversial view. In: Workshop on
on-and off-chip interconnection networks for multicore systems (OCIN), Stanford
(2006)

5. Chen, A.: Emerging nonvolatile memory (nvm) technologies. In: Solid State Device
Research Conference (ESSDERC), 2015 45th European. pp. 109–113. IEEE (2015)

6. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data
transfers in computer clusters with orchestra. ACM SIGCOMM Computer Com-
munication Review 41(4), 98–109 (2011)

7. Comperchio, D., Stevens, J.: Emerging computing technologies: Hewlett-packard’s
”the machine” project. In: HP Discover 2014 conference held in Las Vegas June
10-12. pp. 1–4. Willdan Energy Solutions (2014)

8. Consortium, C., et al.: Cache coherent interconnect for accelerators (ccix). Online].
http://www. ccixconsortium. com (2017)

9. Consortium, G.Z., et al.: Gen-z–a new approach to data access (2017)
10. David, H., Fallin, C., Gorbatov, E., Hanebutte, U.R., Mutlu, O.: Memory power

management via dynamic voltage/frequency scaling. In: Proceedings of the 8th
ACM international conference on Autonomic computing. pp. 31–40. ACM (2011)

11. Deng, Q., Meisner, D., Ramos, L., Wenisch, T.F., Bianchini, R.: Memscale: active
low-power modes for main memory. In: ACM SIGPLAN Notices. vol. 46, pp.
225–238. ACM (2011)

12. Ferenbaugh, C.R.: Pennant: an unstructured mesh mini-app for advanced archi-
tecture research. Concurrency and Computation: Practice and Experience 27(17),
4555–4572 (2015)

13. Gunow, G., Tramm, J., Forget, B., Smith, K., He, T.: Simplemoc-a performance
abstraction for 3d moc (2015)

14. Handy, J.: Understanding the intel/micron 3d xpoint memory. In: Proc. SDC (2015)
15. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,

Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
SAND2009-5574 3 (2009)

16. Jeong, M.K., Erez, M., Sudanthi, C., Paver, N.: A qos-aware memory controller for
dynamically balancing gpu and cpu bandwidth use in an mpsoc. In: Proceedings of
the 49th Annual Design Automation Conference. pp. 850–855. ACM (2012)

17. Karlin, I., Keasler, J., Neely, J.: Lulesh 2.0 updates and changes. Tech. rep.,
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2013)



14 VR Kommareddy et al.

18. Khrabrov, A., De Lara, E.: Accelerating complex data transfer for cluster computing.
In: HotCloud (2016)

19. Kommareddy, V., Awad, A., Hughes, C., Hammond, S.: Opal: A centralized memory
manager for investigating disaggregated memory systems

20. Li, H., Chen, Y.: An overview of non-volatile memory technology and the implication
for tools and architectures. In: Proceedings of the Conference on Design, Automation
and Test in Europe. pp. 731–736. European Design and Automation Association
(2009)

21. Lim, K., Chang, J., Mudge, T., Ranganathan, P., Reinhardt, S.K., Wenisch, T.F.:
Disaggregated memory for expansion and sharing in blade servers. In: ACM
SIGARCH Computer Architecture News. vol. 37, pp. 267–278. ACM (2009)

22. Lin, C.H., Yang, C.L., King, K.J.: Ppt: joint performance/power/thermal man-
agement of dram memory for multi-core systems. In: Proceedings of the 2009
ACM/IEEE international symposium on Low power electronics and design. pp.
93–98. ACM (2009)

23. Liu, J., Jaiyen, B., Veras, R., Mutlu, O.: Raidr: Retention-aware intelligent dram
refresh. In: ACM SIGARCH Computer Architecture News. vol. 40, pp. 1–12. IEEE
Computer Society (2012)

24. Liu, S., Leung, B., Neckar, A., Memik, S.O., Memik, G., Hardavellas, N.: Hard-
ware/software techniques for dram thermal management (2011)

25. Liu, S., Pattabiraman, K., Moscibroda, T., Zorn, B.G.: Flikker: saving dram refresh-
power through critical data partitioning. ACM SIGPLAN Notices 47(4), 213–224
(2012)

26. Meyer, H., Sancho, J.C., Quiroga, J.V., Zyulkyarov, F., Roca, D., Nemirovsky, M.:
Disaggregated computing. an evaluation of current trends for datacentres. Procedia
Computer Science 108, 685–694 (2017)

27. Pawlowski, J.T.: Hybrid memory cube: breakthrough dram performance with a
fundamentally re-architected dram subsystem. In: Hot Chips. vol. 23 (2011)

28. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., et al.: The structural
simulation toolkit. ACM SIGMETRICS Performance Evaluation Review 38(4),
37–42 (2011)

29. Strass, H.: An introduction to nvme. Tech. rep., Seagate Technology LLC (2016)
30. Subramanian, L., Seshadri, V., Kim, Y., Jaiyen, B., Mutlu, O.: Predictable perfor-

mance and fairness through accurate slowdown estimation in shared main memory
systems. arXiv preprint arXiv:1805.05926 (2018)

31. Usui, H., Subramanian, L., Chang, K., Mutlu, O.: Squash: Simple qos-aware
high-performance memory scheduler for heterogeneous systems with hardware
accelerators. arXiv preprint arXiv:1505.07502 (2015)

32. Wu, D., He, B., Tang, X., Xu, J., Guo, M.: Ramzzz: rank-aware dram power
management with dynamic migrations and demotions. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. p. 32. IEEE Computer Society Press (2012)

33. Zhao, J., Mutlu, O., Xie, Y.: Firm: Fair and high-performance memory control
for persistent memory systems. In: Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. pp. 153–165. IEEE Computer
Society (2014)

34. Zhou, P., Du, Y., Zhang, Y., Yang, J.: Fine-grained qos scheduling for pcm-based
main memory systems. In: Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on. pp. 1–12. IEEE (2010)


